Ultrahighresolution microscopy reveals yeast aquaporin transporting water across cell membrane

Category wpszsrkf

first_img Journal information: Science © 2013 Phys.org In order for cells in living creatures to function properly, they must have a means for allowing water to pass through from the outside world into their inner structure—through their membranes. This is how they receive nutrients. At the same time, the water that passes through the membrane must be filtered to keep unwanted material from being carried through with the water. How this happens has been somewhat of a mystery because the channels that carry the water (aquporins) are so small—traditional methods only allow for snapshot views. Progress was made a decade ago, however, when a team of researchers developed a technique that allowed for viewing the process by which potassium ions are transported through potassium channels. In this new effort. the joint American-Swedish team took a similar approach to help them capture the process by which Pichia pastoris yeast is transported through an aquaporin 1 protein.The technique involved capturing the process as it happened at ultra-high resolution—in this case just 0.88 Angstroms. This resolution allowed the researchers to see that the process is very similar to the one found by the team that captured the movement of potassium ions. They found that the way hydrogen bonds were shaped prevented protons from passing through the cell membrane along with the water that carried them. Of particular note, they found that two distinct structures, the NPA-signature motif and the selectivity filter caused water molecules to be oriented in just the right fashion to facilitate the passage of the molecules through the pores in the channel while stopping the unwanted protons.The technique the team developed marks a record for high-resolution captures of cell membrane processes, and paves the way for other research efforts looking to determine how water carrying other unwanted material is filtered by channels in cell membranes. Explore further Fold of Aqy1. (A) The six transmembrane helices and the seventh pseudo-transmembrane helix formed by loops B (orange) and E (green). (B) Water molecule positions within the channel (red spheres). The dual-NPA–aquaporin signature motif (bottom box) and the SF (top box) are highlighted. Credit: Science 14 June 2013: Vol. 340 no. 6138 pp. 1346-1349 DOI: 10.1126/science.1234306 More information: Subangstrom Resolution X-Ray Structure Details Aquaporin-Water Interactions, Science 14 June 2013: Vol. 340 no. 6138 pp. 1346-1349 DOI: 10.1126/science.1234306 https://sp2.img.hsyaolu.com.cn/wp-shlf1314/2020/IMG5341.jpg” alt=”last_img” />

Leave a Reply

Your email address will not be published. Required fields are marked *